Input space versus feature space in kernel-based methods

نویسندگان

  • Bernhard Schölkopf
  • Sebastian Mika
  • Christopher J. C. Burges
  • Phil Knirsch
  • Klaus-Robert Müller
  • Gunnar Rätsch
  • Alexander J. Smola
چکیده

This paper collects some ideas targeted at advancing our understanding of the feature spaces associated with support vector (SV) kernel functions. We first discuss the geometry of feature space. In particular, we review what is known about the shape of the image of input space under the feature space map, and how this influences the capacity of SV methods. Following this, we describe how the metric governing the intrinsic geometry of the mapped surface can be computed in terms of the kernel, using the example of the class of inhomogeneous polynomial kernels, which are often used in SV pattern recognition. We then discuss the connection between feature space and input space by dealing with the question of how one can, given some vector in feature space, find a preimage (exact or approximate) in input space. We describe algorithms to tackle this issue, and show their utility in two applications of kernel methods. First, we use it to reduce the computational complexity of SV decision functions; second, we combine it with the Kernel PCA algorithm, thereby constructing a nonlinear statistical denoising technique which is shown to perform well on real-world data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Distance-based Classifier Using Convolution Kernels and Euclidean Embeddings

Distance-based classification methods such as the nearest-neighbor and k-nearest-neighbor classifiers have to rely on a metric or distance measure between points in the input space. For many applications, Euclidean distance in the input space is not a good choice and hence more complicated distance measures have to be used. In this paper, we propose a novel kernel-based method that achieves Euc...

متن کامل

Synthetic over-sampling in the empirical feature space

The imbalanced nature of some real-world data is one of the current challenges for machine learning, giving rise to different approaches to handling it. However, preprocessing methods operate in the original input space, presenting distortions when combined with the kernel classifiers, which make use of the feature space. This paper explores the notion of empirical feature space (a Euclidean sp...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Clustering Spatial Data Using a Kernel-based Algorithm

This paper presents a method for unsupervised partitioning of data using kernel methods which offer strength to deal with complex data non-linearly separable in input space. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore,...

متن کامل

Data centering in feature space

This paper presents a family of methods for data translation in feature space, to be used in conjunction with kernel machines. The translations are performed using only kernel evaluations in input space. We use the methods to improve the numerical properties of kernel machines. Experiments with synthetic and real data demonstrate the effectiveness of data centering and highlight other interesti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 1999